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The Effects of Operator Splitting in Computing Curved Shocks 

Grant O. Cook, Jr.
Lawrence Livermore National Laboratory

Dimensionally split numerical methods have been in common use in computational physics fo
many years. This isdueto theneed for speed, theformal convergenceof Strang splittings, and the
accessibility of shock capturing techniques in one dimension. However, the lack of genuinely
unsplit multidimensional shock capturing methods has made it difficult to access just how large
the errors are in a dimensionally split approach.  This applies in spite of splitting correction
have been used to obtain formally “unsplit” methods. A new class of methods that are genuinely
unsplit have recently been developed.  These are the so-called “Conservation Element and Solu-
tion Element” (CE/SE) methods.  Using these high accuracy methods, we show that converging
flows and the subsequent expanding flows are accurately captured by CE/SE methods.  Contra
wise, it will be shown that dimensionally-split Godunov and unsplit wave propagation methods
distort the flow for the same cases, sometimes seriously. (U)

Keywords: curved shocks, CE/SE, operator splitting, Godunov, wave propagation

Int roduction

Numerous attempts have been made over the long history of hydrodynamics to accurately
simulate shock propagation when the shock is not aligned with the mesh. It is widely held t
good results are obtained in the non-aligned case by using methods that are based upon u
Strang-typeoperator splitting (Khan and Liu, 1998; LeVeque, 1997; Saltzman, 1994). With some
one-dimensional shock-capturing methods, it hasbeen argued that it ispossible to perform fixups
to thetransversecomponent of theflow by estimating theerror incurred with theoperator splitting
(Dai and Woodward, 1997; LeVeque, 1997). Whilewehavefound that theseconclusionsarevalid
if the shocks are weak enough and the flow smooth enough, we have also found that for strong
shocks and large curvature situations, operator-split techniques incur large errors.

In this paper, we demonstrate that at least one unique method does not suffer these deficien-
cies. This method is the Space-Time Conservation Element and Solution Element (CE/SE)
method due to Chang (1995). Among its many strengths is that it is genuinely unsplit from the
start.  It is highly accurate in 2D and 3D, as well as 1D.

In addition to the CE/SE method there is at least one other truly unsplit shock-capturing
malism. It is the Riemann Invariant Manifold theory (Papalexandris et al., 1997) which can be
used with a variety of one-dimensional methods. This approach will not be considered furthe
here.

Some of the unique aspects of the CE/SE method are:

• No directional splitting is employed in 2D and 3D.
-1-
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• It solves the integral form of conservation laws in the space-time domain.

• It conserves space-time flux locally and globally.

• A leap-frog time advance mechanism is used. Because of this, flow information on inter-
faces separating conservation elements can be evaluated without interpolation or extrapo-
lation.

• In addition to the flow variables, the time derivative and several spatial derivatives of the
flow variablesare treated asdependent variables. Thismeans that theflow structure isnot
calculated through a reconstruction procedure as in Godunov schemes.

• When dissipation isadded to suppresswiggles, it is alinear addition to thenon-dissipative
spatial derivatives of the flow variables. Dissipation is not directly added to the flow vari-
ables.

Notably, shock capture isachieved without acharacteristic decomposition or theneed to solve
a Riemann problem.

Wewil l begin by sketching theessentialsof theCE/SE method. Then the test problemsrepre-
senting converging and diverging 2D shocks are introduced. All of the problems were run on u
form squareCartesian grids. Theresultsobtained with theCE/SE method arethen compared with
those found from two (dimensionally-split) Godunov methods.

The CE/SE Method

Chang and his coworkers have shown that the propagation of signals in hyperbolic conserva-
tion laws implies that it is beneficial to formulate the solution process as a leapfrog method
(Chang, 1995). It iseasy to select conservation elements to allow a leapfrog update. Each conser-
vation element (CE) is a region in space-time over which the integral form of each conservation
law is valid. Conservation elements are chosen to fill in the space-time problem domain. Wh
many choices are possible, we choose rectangular brick volumes in space-time for the conserva-
tion elements in the simulation code used here.

Next, the solution elements (SE) are selected as the domains over which values of the depen-
dent variables are needed in integrals arising from the integral form of the conservation laws. In
thesedomainsaconvenient representation for thedependent variables isselected. Usually, this is
a Taylor series representation that is expanded about a center point in the solution element. For
instance, in two dimensions on a rectangular grid that lines up with the coordinate axes, we pick
the following representation for a dependent variableg.

(1)

Note that n denotes a time level, i denotes an index in thex direction, and j an index in they
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direction. These indices specify the center point of the solution element that is the domain 
validity for equation 1.

Asshown in Figure1, typically two solution elementsare involved in the integration of acon-
servation law over a CE. The expansion points for the Taylor series in each solution element are
denoted by the bullet symbol. One of these solution elements involves known quantities from the
past time level.  The other solution element is that for the unknown advanced-time values of the
coefficients in the corresponding Taylor series.

In theTaylor seriesexpansion, isdetermined from thepartial differential equation for

g. Theremaining four unknowns, , , , and are found by solving the

four equations obtained by integrating the conservation law for g over the four individual conser-

vation elements surrounding the update point . Figure 2 shows the four conservation

elementsthat surround agiven updatepoint in auniform rectangular Cartesian coordinatesystem.
The CE labelled I is the same CE illustrated in Figure 1. This sketch also makes it a little clearer
how one leapfrog time step works. It also motivates the fact that when the integrals for two adja-
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Figure 1. A typical conservation element with two Taylor
series expansion points associated with solution elements
that cover the surfaces and volume of the conservation ele-
ment.
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98).
cent CEs are added together, the contribution on the common face is zero.

Note that no dissipation is involved in obtaining these coefficients in the Taylor series. Of
course, in order to prevent ringing at shock fronts, dissipation must be added to the non-dissi
tivesolution. Originally, Chang used atwo parameter dissipation model for damping this ringing.
By treating the CE of dissipation model as the union of the CEs surrounding an update poi

, a method for conservatively modifying the derivative coefficients was obtained.

Recently, Chang refined this technique with a three parameter dissipation model (Chang, 19

The basic idea behind this new dissipation model is to separately damp weak waves and
strong shocks. This is indicated in equation 2, where is theparameter for damping weak waves

and  is the parameter for damping shocks.

 , (2)

where  is a central difference approximation to ,  is a nonlinear weighted average of one-

sided approximations to , and
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Figure2. A typical arrangement of conservation elementssurrounding an update
point in leapfrog position. The solution element Taylor series expansion point at the
old time level (n-1/2) for CE IV is not visible.
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.

 , (3)

is the solution obtained for  when solving the four equations obtained from integrating

over the CEs I, II, III, and IV in Figure 2.

In order to compute  and , it is first necessary to obtain some advanced-time estimates

from the previous time level data. To accomplish this, the Taylor series is used:

. (4)

 is found from these values as follows:

(5)

Coupling  with the known value at the update point, , four planes can be con-

structed, one in each of the and directions. For the ith such plane, thex and y derivativesof

g can be computed. Then, if  and  are the derivatives on the ith plane, define

. (6)

With this quantity, the nonlinear weighted average of  can be defined as:

(7)

with α usually chosen to be1.0 or 2.0. iscomputed analogously. This limiter is thegeneraliza-

tion for a regular rectangular grid of Chang’s two-dimensional limiter on a regular triangular grid
(Chang et al., 1995).

It is also important to note that  is computed in a way that introduces no directional bias

This generalized multidimensional limiter preserves the genuinely unsplit nature of the CE/SE
method. Thus, unlike techniquesbased upon Godunov or Riemann solvers, thereareno fixupsor
adjustments required to accommodate coupling between different directions.
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It is most common to use an artificial viscosity as a way of adding dissipation to a physical
model. Since an artificial viscosity is added to the physical pressure, it is therefore the case
linear changes in the artificial viscosity introduce nonlinear changes in the solution. By con
theCE/SE dissipation model introduceschangesin thederivativecoefficients that are linear in the
amount of dissipation added. Furthermore, the dissipation is added only after the non-dissiive
solution is computed. Chang found that the addition of this dissipation breaks the space-tim
invariance properties that a non-dissipative CE/SE method possesses (Chang, 1995).

Theoverall result is that theCE/SE model providesbetter control of thedissipation than meth-
ods that introduce dissipation inside of a nonlinear operator. The CE/SE dissipation model also
yields more readily to mathematical analysis.

Applying the CE/SE Method to the Two-Dimensional Euler Equations

For the two dimensional Euler equations in Cartesian coordinates, we solve the equations in
internal energy form.  That is, the dependent variables are chosen to be . We

chooseto denotethex and y componentsof themomentum by and ; that is, and

 respectively. Also, the symbol P denotes the pressure, and should not be confused

with the components of the momentum vector.

Weillustrate theapplication of theCE/SE method to thissituation by examining theconserva-
tion law for . The first step is to write the integral form of the conservation law for  begin-

ning with equation 8:

(8)
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expressions 9, 10, and 11. Note that the term in each equation that is not at the update poi
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or
Now define the two flux terms in equation 8 as:

(12)

The Taylor series for  can be used to evaluate the integrals in expression 9. In order to

obtain comparable results in the integrals in expressions 10 and 11, one choice is to linearize th
flux terms as in equations 13 and 14.

(13)

(14)
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major time step (two leapfrog steps in a major time step) than the Godunov solver. Also, we
observed that the CE/SE implementation is able to get reliable solutions at larger time steps than
the Godunov method. These observations have been made in a framework where both the CE/SE
method and aGodunov method areimplemented in thesamesimulation code, and in away so that
both use exactly the same underlying simulation code services (such as initialization, memo
management, graphics, etc.). Consequently, the algorithms themselves can be directly compared
for speed, accuracy, code size, etc. Since the CE/SE method involves solving for the flow vari-
ables and their gradients, it is not obvious how this can be made to be more efficient than an opti-
mized Godunov solver. This achievement was made possible through the use of advanced
symbolic computing tools for the bulk of the coding, very sophisticated optimization, and clever
adjustments to the multidimensional limiters.

When reducing the amount of dissipation used by CE/SE, a nonlinear solver is required, and
the CE/SE method then slows down to about half the speed of the Godunov solver. Considering
the gains in accuracy, especially for curved features, this is an easily justified cost.

Test Problems

We illustrate curved shock issues with converging cylindrical shocks. In order to elucidate the
problems that arise due to split versus unsplit methods, we pick model problems in cylindrical
coordinates that depend only upon the radial coordinate. The simulation is then performed on a
uniform two-dimensional rectangular Cartesian grid that lies in the (ρ,θ) cylindrical coordinate
plane. The size of the grid is 128 by 128.

In the two problemsconsidered here, the initial conditions include features that do not conform to
the geometry of the grid. Hence, stairstepping errors or mesh imprinting occurs due to the initial
conditions. Nonetheless, as will be seen from the CE/SE solutions, these errors are small.

The first Godunov solver used in these simulations is based upon the Direct Eulerian MUSCL

scheme.4 It employs astandard ADI-type approach for solving the multidimensional Euler equa-
tions; that is, after solving a sequence of Riemann problems in one direction, it performs trans-
verse fixups in the directions normal to the sweep. In order to remove some bias, the order of
directional sweeps is reversed from one-half time step to the next. Since this solver is the
Godunov method implemented in theOdyssey code, it wil l be identified as theOdyssey Godunov
solver in the following discussion.

Thesecond Godunov solver employed is one in theCLAWPACK packageasembedded in AMR-

CLAW.7 Of those available, we selected the default Godunov technique employed in the Euler
example section of CLAWPACK. It is a wave propagation method with an ‘unsplit’ character in
the sense that it approximates the terms that are missing in the operator splitting of the full (non-
linear) Euler equations.

The CE/SE solver used in the simulations used the following parameter values for the dissipation
model: and , with in the first problem and in the second
problem. Six digits of accuracy in the nonlinear solver was requested in each case.

ε 0.25= β 0.12= α 1.0= α 2.0=
-8-
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All r egions in these problems are made up of -law gases with .

The first problem is athree region problem where the inner region is very low density, low pres-
sure, the middle region is higher density and medium pressure, while the outer region is low den-
sity and high pressure. Each region is bounded by cylindrical surfaces. The initial density
contours are shown in Figure 3. Note from the Godunov solutions in Figures 4 and 5 that just
before the main shock reaches the lower left corner of the plot, the Odyssey Godunov result is
showing hintsof flattening in thesolution along thediagonal of thegrid (wherex=y, x and y being
thetwo Cartesian coordinates)). In theCLAWPACK solution, theflattening isvery pronounced. A
short while after the main shock bounce is seen in Figures 6 and 7. A significant deterioration of
both Godunov solutions near the origin has clearly occurred. In fact, in addition to flattening of

CONTOUR FROM  0.32167E-01 TO  0.73783     CONTOUR INTERVAL OF  0.24333E-01 PT(3,3)=  0.20000E-01 LABELS SCALED BY   1000.0

Figure3. Initial conditions for the threeregion problem. The inner very low
density region has alow pressure; the low density outer region has ahigh
pressure; and the high density middle region has an intermediate pressure.

γ γ 5
3
---=
-9-
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Figure 4. Problem 1 just before a major shock reaches the origin. The top plot shows the
CLAWPACK result; the lower left plot shows the corresponding Odyssey Godunov result; and
the lower right plot shows the CE/SE result using .α 1.0=
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Figure5. Close in views in problem 2 just before amajor shock reaches theorigin. The top plot
shows the Odyssey Godunov result, while the bottom plot shows the CE/SE result using

.α 1.0=
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Figure 6. Problem 1 after the shocks have rebounded. The top plot shows the CLAWPACK
result; the lower left plot shows the corresponding Odyssey Godunov result; and the lower
right plot shows the CE/SE result using .α 1.0=
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Figure 7. Close in views in problem 2 after the shock has bounced. The top plot shows the
Odyssey Godunov result, while the bottom plot shows the CE/SE result using .α 1.0=
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0.50 1.00 1.500.50 1.00 1.50

0.50 1.00 1.500.50 1.00 1.500.50 1.00 1.500.50 1.00 1.50

Figure8. Different resolution close in viewsof problem 1after theshock hasbounced. Odyssey
Godunov was used in each case. The top plot has resolution 128x128, the lower left plot has
resolution 256x256, and the lower right plot has resolution 512x512.
-14-



NECDC October 1998
theshocks, thereappears to be jetting occurring on thecoordinateaxesnear theorigin. In thecase
of CE/SE, there is slight squaring of the contours out a short distance from the origin. Also, a
minor manifestation of themesh imprinting of the initial conditions isvisible. But overall, theCE/
SE solution is excellent.

It is tempting to speculate that one only need refine the mesh to help the operator split technique
overcomeitsdifficulty. Theresults in Figure8 demostrateclearly that wearenowhereclose to the
convergence limi t of the Strang-type splitting for this problem. In fact, more problems are being
introduced through refinement.

Thesecond problem isa two region problem where the inner region isa low density, low pressure
gas, and the outer region is amedium density and medium pressure gas. Once again, the regions
are bounded by a cylindrical surface.Contours of this setup are shown in Figure 9.

From Figures10 and 11, just before themain shock reachesthe lower left corner of theplot, slight
hints of flattening appear in the Godunov solutions along the diagonal of the grid occurs. The
effect is not as strong as in the first problem. However, color contour plots definitely reveal the

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.00 0.05 0.10

0.00

0.05

0.10

Figure 9. Initial conditions for the two region problem. The inner
low density region has a low pressure, and the medium density
outer region has an intermediate pressure.
-15-
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CONTOUR FROM  0.63436E-01 TO  0.23703     CONTOUR INTERVAL OF  0.61999E-02 PT(3,3)=  0.97427E-01 LABELS

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.00 0.05 0.10

0.00

0.05

0.10
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{t=1.76e-03,x,y}->{rho}

Figure 10. Problem 2 just before the main shock reaches the origin. The top plot shows the
CLAWPACK result; the lower left plot showsthecorresponding Odyssey Godunov result; and
the lower right plot shows the CE/SE result using .α 2.0=
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Figure 11. Close in views in problem 2 just before a major shock reaches the origin. The top
plot shows the Odyssey Godunov result, while the bottom plot shows the CE/SE result using

.α 2.0=
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Figure 12. Problem 2 after the shock has rebounded. The top plot shows the CLAWPACK
result; the lower left plot shows the corresponding Odyssey Godunov result; and the lower
right plot shows the CE/SE result using α 2.0=
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Figure 13. A close in view of problem 2 after the shock has rebounded. The top plot shows the
Odyssey Godunov result, while the bottom plot shows the CE/SE result using .α 2.0=
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when

u-

ocks.
effect. For the CE/SE method, mesh imprinting may have caused one contour to be slightly flat-
tened. In this case, color contour plots only show a slight asymmetry in the solution.

A short whileafter themain shock bounce, theGodunov solutions in Figures12 and 13 both show
significant deterioration near theorigin. In thiscase, jetting occurson thecoordinateaxesnear the
origin, although not as pronounced as in the three region problem. As before, the CE/SE solution
appears to be cylindrically symmetric.

Theseresultsestablish beyond adoubt that thegenuinely unsplit CE/SE technique isquitepower-
ful. Using asquare Cartesian grid, curved shocks are propagated almost without distortion across
a grid that at no point in the simulation matches the shape of the shocks. It is also clear that very
serious errors can arise due to the use of dimensional splitting in solvers of nonlinear equations.
From our experience, the evidence points to the dimensional splitting errors becoming visible
when the curvature of a shock becomes large in a single zone of the grid.

Conclusions

The cylindrically symmetric shocks that propagate on a Cartesian grid are not distorted 
the CE/SE solver is used. On the other hand, there is distortion when a Godunov method is used.
In particular, there is a flattening of the shock about thex=y diagonal (x and y are the two Carte-
sian coordinates). In addition, there are errors in the position of the shock along thex and y axes.

The CE/SE method is a very promising new numerical method. There has been some conf
sion about its relation to other techniques. First, themethod for finding anon-dissipativesolution
to the conservation laws is totally new. However, the formulation of the dissipation terms does
draw upon other methods. Thus, whileCE/SE isnot afinitedifferenceor afinitevolumemethod,
finite differences are used to compute the dissipation terms that damp the ringing at the sh

The ramifications of our results are not limited to the case when a shock has curvature. Any
nonuniform flow, particularly one developing instabilities or turbulence, will be more faithfully
followed by a technique like theCE/SE method. Thismethod’sgenuinely unsplit character iscrit-
ical to itsaccuracy in thetestspresented hereand pointsclearly to itspotential in moredemanding
flow problems.
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